Artificial intelligence and machine learning in healthcare: An Intellectual Property Perspective

Artificial intelligence (AI), particularly machine learning (ML), is already transforming transport, telecommunications and retail. Globally, the top ten patent applicants and proprietors for AI/ML related inventions include Microsoft, IBM, Siemens, Google, Zongcheng Li, State Grid Corporation of China, Samsung, Qualcomm, Hitachi and Panasonic.

AI and ML have the promise of revolutionising healthcare. Indeed, AI in healthcare is growing at an accelerating rate, with the market expected to be valued at US$6.6 billion by 2021. Applications of AI in the healthcare sector are far reaching and include drug discovery, diagnosis, treatment, assistance during surgery as well as record management.

With AI and ML set to disrupt the healthcare industry and provide an immense opportunity for innovation, we analyse the Intellectual Property (IP) landscape in the sector.

Technology giants enter the stage

Notably, AI in healthcare is at the confluence of traditional healthcare organisations, including pharmaceutical and medical device innovators, and the AI/ML leaders, including the technology giants of Facebook, Apple, Microsoft, Google and Amazon. So, what are these AI/ML leaders doing in healthcare?

Between 2013 and 2017, Google, Microsoft and Apple filed between them more than 300 patent applications related to healthcare. Ahead was Google with 186 patent applications, Microsoft with 73 and Apple at 54. While Amazon had not published any healthcare related patent applications in this timeframe, their partnership with Berkshire Hathaway and JP Morgan may lead to patent filings in this sector in the future.

The surge in filings of patent applications by companies that have not traditionally been associated with the healthcare sector demonstrates the opportunities for disrupting the healthcare industry with new technologies.

Amongst the five technology giants, Google is firmly positioning itself as the leader in AI/ML. Already ubiquitous online, Google (used herein synonymously with Alphabet) has extended machine learning from shopping suggestions to disrupting healthcare. Google is not only establishing AI/ML research centres globally and developing its own hardware for AI/ML processing but also investing and acquiring emergent AI/ML organisations. DeepMind was acquired by Google and is dedicated to AI research. DeepMind is concerned particularly with data, for example as generated by wearables and from imaging devices such as MRI and CT. Verily Life Sciences partners with existing healthcare institutions to improve healthcare via analytics tools, interventions and research. Projects at Verily include detecting diabetes through wearables, combating presbyopia, identifying indicators of Parkinson’s disease onset and understanding progression of multiple sclerosis. Calico is dedicated to controlling ageing and age – related diseases.

Application of machine learning in healthcare has been enabled particularly through partnerships and collaborations between technology-focused companies and healthcare organisations. For example, IBM Watson has collaborated with both Novartis and MIT while Berg Health and Sanofi and Numerate and Takeda have also partnered.

Phillips, for example, has developed clinical decision support systems for both diagnosing and treating cancers as well as neurological disorders, such as Alzheimer’s. Through use of image processing, GE healthcare has advanced also diagnosis in oncology. Siemens is leading decision support systems for distinguishing benign and malignant lesions for breast cancer.

Leaders in AI/ML in healthcare

The following companies are emerging as leaders in AI and ML for healthcare applications:

Drug discovery: IBM Watson, Google Deep Mind, Benevolent AI, Berg Health, Exscientia, Numerate, Atomwise, twoXAR, Pharma AI, Meta, Globavir, CloudPharmaceuticals, Insilico Medicine, GNS Healthcare, Recursion Pharmaceuticals Whole Biome.

Diagnostics: IBM Watson, Google Deep Mind, Proscia, Path AI, Babylon Health, Cenlitic, deep genomics, Entopsis, Pathway Genomics, Freenome

Medical imaging: Butterfly network, Arterys, Visexcell, Zebra Medical Vision, CureMetrix, Infervision, Nirami, Enlitic, Recursion,, Clarview Diagnostics

How to obtain patent protection for AI and ML inventions at the European Patent Office

Given the emergence of AI and ML in healthcare applications, how can companies protect their ideas?

Although there are some challenges to protecting AI inventions, it is possible to obtain patent protection in this fast-developing area. One of the main features that is assessed during the examination of applications at the European Patent Office (EPO) is the technical character of an invention. Therefore, applications in the AI/ML space need to be drafted carefully to comply with the legal provisions in Europe and elsewhere.

A number of cases have been decided by the Boards of Appeal, the first and final judicial instance in the procedures at the EPO which illustrate the hurdles in protecting innovations relating to AI and ML.

For example, at the EPO, features of an algorithm underlying a computer-implemented method, falling under the exclusions of Article 52(2) and (3) EPC, forbidding patenting of a computer program “as such”, provide a technical contribution only to the extent that they interact with the technical subject matter of a claim for solving a technical problem (T 154/04). A technical interaction may be present if technical considerations motivating the algorithm’s design can be identified that make the algorithm suitable for being performed on a computer and that ‘go beyond merely finding a computer algorithm to carry out some procedure’ (T 1538/09). However, simply improving algorithmic efficiency has been assessed by the Boards to not provide a technical effect in support of inventiveness (T 1784/06, T 42/10, T 1370/11).

In T 1510/10, the Board of Appeal had to consider whether using machine-learning algorithms could contribute to inventive step. This case concerned ranking information, particularly live web applications, based on interest and/or importance. The Board highlighted that the claimed subject matter failed to define any particular method of machine learning – not even one was described in the application. Rather, machine learning was presented in the application as known. Thus, the Board decided that ‘no inventive step can derive just from the use of machine learning.’ The Appeal was dismissed.

In T 1285/10, grant of a patent was allowed following remittal to the department of first instance, but not because of the artificial intelligence routines that the claimed method used. This case related to an artificial intelligence system for genetic analysis, claiming a method for diagnosing and recommending treatment for a physiological condition. Three of the five claimed method steps related to handling hybridization data of an array of oligonucleotides of about 20 mer to about 25 mer or peptide nucleic acid probes. Particularly, step (iv) required using artificial intelligence routines to determine the most likely pathological or physiological conditions suggested by comparative analysis of hybridization profiles. However, this use of AI was not at issue before the Board of Appeal since it was common ground that use of AI generally was already known. Rather, the case turned on the type of data. While the Board was only reviewing the first instance decision on added matter and sufficiency, it did not come to a decision on inventive step, but made an obiter dictum observation that it considered the claims of the requests to be obvious in the light of the prior art. After remittance, the department of first instance decided that the auxiliary request considered in the Appeal was inventive, in view of its use of hybridization information from an array of peptide nucleic acid probes, and a patent granted, published as EP 1222602B1.

So when considering inventions that use artificial intelligence or machine learning, wherein lies the invention? Following T 1510/10 and T 2418/12, the invention should not be in the use of AI or ML per se, as these fail to provide non-excluded technical contributions even if they do give novelty. Rather, the invention should be in the non-excluded technical solution to a technical problem – as apparent in T 1285/10 and exactly as according to the established case law for assessment of patentability of computer-implemented inventions at the EPO.

For applicants, patentees and opponents alike, these decisions help in assessing whether a claimed invention, that uses AI or ML, will succeed or fail. AI or ML may bring novelty, but AI or ML per se does not give the non-excluded technical contribution necessary for an inventive step. At minimum, the claimed invention should provide a technical effect in the real world that is more than simply a way of speeding up arriving at the solution to a problem. Achieving the technical effect should not be reliant solely on the AI or ML, both being arguably well-known and having expected outcomes, at least in a sense of providing improvements. Nevertheless, where AI or ML is used, the application should comprehensively describe the detailed implementation, functionally and structurally – even if only for sufficiency or a view towards the US patent office requirements for patentability.

Furthermore, the recent update to the Guidelines for Examination in the EPO (valid from 01 November 2018) provides examples of inventions that overcome the exclusions and that are patentable at the EPO. Selected examples listed in the Guidelines of Examination of technical purposes served by a mathematical method include providing a genotype estimate based on an analysis of DNA samples, as well as providing a confidence interval for this estimate so as to quantify its reliability. For inventions based on AI and ML, the Guidelines for Examination also include patentable examples of technical applications and technical implementations, including use of a neural network in a heart monitoring apparatus for the purpose of identifying irregular heartbeat.

What does the future hold?

With the growing importance of AI and ML in the healthcare sector, we expect to see a further rise in patent applications in this field, in particular with more and more technology companies emerging as stakeholders. AI can be a game changer to how patients are diagnosed and treated. As we are moving into new territory, companies need to protect their intellectual property assets to remain competitive. With challenges in how these types of inventions can be protected, creative and thoughtful strategies are key when it comes to IP protection. AI also provides an opportunity for more collaborative innovation and patent protection strategies.

If your business depends on technology based on AI and ML, we can secure the intellectual property (IP) protection you need, so you can maintain your exclusivity. In addition, we can define a clear path for you through the IP surrounding your technology, so you can continue and grow your business.

Howard Read – Senior Associate – Patent Attorney at Appleyard Lees